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OVERVIEW – SYCL [1]

§ Cross-platform abstraction layer for heterogeneous programming
§ Khronos standard specification
§ Builds on the underlying concepts of OpenCL while including the strengths of 

single-source C++
§ Includes hierarchical parallelism syntax and separation of data access from data 

storage
§ Designed to be as close to standard C++ as possible
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Collection of performance benchmarks 
with RAJA and non-RAJA variants.

§ Stream (stream)
ADD, COPY, DOT, MUL, TRIAD

§ Basic (simple)
DAXPY, IF_QUAD, INIT3, INIT_VIEW1D, 
INIT_VIEW1D_OFFSET, MULADDSUB, 
NESTED_INIT, REDUCE3_INT, TRAP_INT 

§ LCALS (loop optimizations)
DIFF_PREDICT, EOS, FIRST_DIFF, HYDRO_1D, 
HYDRO_2D, INT_PREDICT, PLANCKIAN

§ Apps (applications)
DEL_DOT_VEC_2D, ENERGY, FIR, LTIMES, 
LTIMES_NOVIEW, PRESSURE, VOL3D

§ PolyBench (polyhedral optimizations)
2MM, 3MM, ADI, ATAX, FDTD_2D, 
FLOYD_ARSHALL, GEMM, GEMVER, GESUMMV, 
HEAT_3D, JACOBI_1D, JACOBI_2D, MVT

RAJA PERFORMANCE SUITE [2]



RAJA PERFORMANCE SUITE

§ Primary developer – Rich Hornung (LLNL)
– See RAJAPerf github page for full list of contributors

§ Very good for compiler testing

§ Built in timer and correctness testing.
– Timer cover full execution of many repetitions the kernels
– Correctness is done with checksum compared against sequential execution

§ Many “variants”
– Base_Seq, Lambda_Seq, RAJA_Seq, Base_OpenMP, 
Lambda_OpenMP, RAJA_OpenMP, Base_OpenMPTarget, 
RAJA_OpenMPTarget, Base_CUDA, RAJA_CUDA 
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OUTLINE - P3

§ Productivity
– Discuss experiences porting from CUDA

§ Portability
– Compiler correctness and support across various architectures

§ Performance
– Performance of various compilers for each architecture

Lessons learned
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PRODUCTIVITY



PORTING FROM CUDA
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• Kernel Code
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PORTABILITY



SYCL ECOSYSTEM
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Image Credit [4]: https://github.com/illuhad/hipSYCL/blob/develop/doc/img/sycl-targets.png



COMPILERS

§ Intel SYCL [3]

– OpenCL + SPIRV for SKX and Gen9
– CUDA + PTX for V100

§ HipSYCL [4]

– CUDA for V100

§ ComputeCPP [5]

– OpenCL + SPIRV for SKX and Gen9
– OpenCL + PTX for V100
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ARCHITECTURES

§ SKX – Intel Xeon Platinum Skylake 8180M Scalable processors

§ Gen9 – Intel Xeon Processor E3-1585 v5, with Iris Pro Graphics P580

§ V100 – NVIDIA V100 GPU
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Processor DP Flop-rate (GF/s) DRAM (GB/s)
SKX 3,720 214

Gen9 300 28.8

V100 7,660 778

Measured performance [6]



FEATURE SUPPORT

§ Added extra boundary checks for kernels with buffers that are different size than 
the iteration space

§ Syntactic sugar
– i.get_local_range(dim); -> i.get_local_range().get(dim);

§ Accessors with offset not fully supported, used pointer arithmetic
– auto x1 = d_x.get_access<read>(h, len, v1); 
-> auto x = d_x.get_access<read>(h);

auto x1 = (x.get_pointer() + v1).get(); 

Workarounds for portability with current support
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FEATURE SUPPORT

§ 3 Kernels with reductions are not included with our data
§ Support is not standard for 1.2 specification
§ 2020 specification additions of interests

– Floating point atomics
– Reductions
– Unified shared memory
– Lambda naming

Future support
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CORRECTNESS

§ SKX - Intel SYCL
– Several small floating point differences, within expected bounds
– 1 incorrect result

§ Gen9 - Intel SYCL
– Several small floating point differences, within expected bounds

§ V100 – HipSYCL
– Several small floating point differences, within expected bounds

§ V100 – ComputeCPP
– 2 incorrect results, 2 miscompiled kernels

§ Everything else was exact match

Checksum compared to sequential execution
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PERFORMANCE



SKX – STREAM GROUP (SEC)
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SKX – BASIC GROUP (SEC)

22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bas
ic_

DAXPY

Bas
ic_

IF
_Q

UAD

Bas
ic_

IN
IT

3

Bas
ic_

IN
IT

_V
IE

W
1D

Bas
ic_

IN
IT

_V
IE

W
1D

_O
FF

SET

Bas
ic_

M
ULA

DDSUB

Bas
ic_

NESTE
D_IN

IT

Intel SYCL ComputeCPP



SKX – LCALS GROUP (SEC)
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SKX – APPS GROUP (SEC)
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SKX – POLYBENCH GROUP (SEC)

25

0

0.5

1

1.5

2

2.5

Poly
be

nc
h_

2M
M

Poly
be

nc
h_

3M
M

Poly
be

nc
h_

ADI

Poly
be

nc
h_

ATAX

Poly
be

nc
h_

FDTD_2
D

Poly
be

nc
h_

FLO
YD_W

ARSHALL

Poly
be

nc
h_

GEM
M

Poly
be

nc
h_

GEM
VER

Poly
be

nc
h_

GESUMM
V

Poly
be

nc
h_

HEAT_
3D

Poly
be

nc
h_

JA
COBI_

1D

Poly
be

nc
h_

JA
COBI_

2D

Poly
be

nc
h_

M
VT

Intel SYCL ComputeCPP



GEN9 – STREAM GROUP (SEC)
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GEN9 – BASIC GROUP (SEC)
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GEN9 – LCALS GROUP (SEC)
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GEN9 – APPS GROUP (SEC)
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GEN9 – POLYBENCH GROUP (SEC)
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V100 – STREAM GROUP (SEC)
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V100 – BASIC GROUP (SEC)
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V100 – LCALS GROUP (SEC)
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V100 – APPS GROUP (SEC)
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V100 – POLYBENCH GROUP (SEC)
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V100 – STREAM GROUP (SEC)
Size factor 5X
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V100 – BASIC GROUP (SEC)
Size factor 5X
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V100 – LCALS GROUP (SEC)
Size factor 5X
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V100 – APPS GROUP (SEC)
Size factor 5X
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V100 – POLYBENCH GROUP (SEC)
Size factor 5X
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PREVIOUS WORK

“Evaluating the Performance of the 
hipSYCL Toolchain for HPC Kernels on 
NVIDIA V100 GPUS” [7]

§ Conclusion
– SYCL using hipSYCL is showing 

competitive performance to CUDA 
on NVIDIA devices

§ Percent speedup of SYCL variant 
relative to the CUDA variant for kernel 
timings using nvprof
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CONCLUSIONS

§ Good ecosystem
– Multiple compilers for each device

§ Portable code
– Minor feature support issues

§ Performance is good across compilers

§ More variance in compiler performance as complexity increases
– Good to be able to test performance with various compilers
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